SLAB User Manual

SLAB User Manual

s|L)( )@ B

Joel D. Miller

SLAB is asoftware-based real-time virtual acoustic environment (VAE) rendering system being
developed in the Spatial Auditory Displays Lab at NASA Ames Research Center.

Note: The SLAB User Releaseis awork-in-progress. Functionality described herein is subject
to change. This document will be revised frequently.

Contents

« Introduction
o System Requirements
o Instalation
o Citing SLAB
o Acknowledgements

o Overviews
o SLAB Render API
o Coordinate System
o Sound Sources
o HRTF Databases
o Error Handling
o Tips

o SLAB Render Plug-Ins
o Overview
o Starter Project

« Source Code
o SLABClient

file://IC|/SLAB/doc/user/slabuserman.htm (1 of 2) [10/1/2003 11:36:27 AM]



SLAB User Manual

o rdiotic

o rplugin
o SLABX
0 Installer

« Applications and Utilities
o SLABScape
o SLABServer
o glabtools
o Example Application
o Appendix
o Glossary
o Known Issues
See also: SRAPI Reference Manua

SLAB User Manual v5.3.0
Copyright 2001-2003 U.S. Government as represented by the
Administrator of the National Aeronautics and Space Administration.

Initiated: July 5, 2000
Last Updated: September 10, 2003

file://IC|/SLAB/doc/user/slabuserman.htm (2 of 2) [10/1/2003 11:36:27 AM]


file:///C|/SLAB/doc/ref/index.html

Introduction

| ntroduction

« System Requirements
 Installation

» Citing SLAB

« Acknowledgements

System Requirements

The software and hardware components listed below are required and/or recommended for
developing SLAB applications.

Software

Operating System: Windows2000

SLAB is being developed under Windows2000. In theory, SLAB should be compatible with
Windows98SE/ME, but this has not been tested. Client applications have run successfully under
WindowsNT 4.0, Service Pack 3. NT host-mode applications, however, are likely to fail due to
NT's DirectSound emulation.

Low-latency Audio Interface: DirectSound 8.1

SLAB uses DirectSound to achieve low-latency audio output (e.g., ~24ms). The sound card used
with SLAB must have a non-emulated DirectSound driver installed. To run the SLABScape and
SLABServer applications, the DirectSound Runtime should beinstalled. To develop SLAB
applications, the DirectX SDK should be installed. If you have a previous DirectSound version
installed, it might not be necessary to upgrade. First, give SLAB atry; if you encounter
problems, you might want to upgrade. DirectSound 6 Runtime isinstalled with Windows98SE.
The Microsoft DirectX download siteis: http://www.microsoft.com/directx/. Developer

information is available at: http://msdn.microsoft.com/directx/.

Note regarding latency under Windows2000 vs Windows98SE:

Under Windows2000, the DirectSound driver accesses the hardware through aWDM driver.
Some WDM drivers use the Windows KMixer which adds approximately 20ms of latency to
sound output. Windows98SE WDM drivers also appear to have this additional latency (versus
VXD drivers). SLAB'stotal internal latency is approximately equal to the sum of the
DirectSound buffer size, the smooth-time value, and the KMixer latency (for WDM drivers).

Compiler (optional): Microsoft Visual C++ .NET

A compiler is necessary for SLAB application development. SLAB is being developed using
Microsoft Visual C++ .NET. The SLAB header files and libraries have not been tested under
other development environments. Missing library errors have been noticed when linking with
the SLAB libraries using Microsoft Visual C++ 6.0. Thus, the SLAB libraries may not be
compatible with pre-.NET versions of Microsoft Visual C++.

Hardwar e

SLAB Server or Host Workstation

file://IC|/SLAB/doc/user/chapters/introduction.htm (1 of 4) [10/1/2003 11:36:27 AM]


http://www.microsoft.com/directx/
http://msdn.microsoft.com/directx/

Introduction

Computer Workstation:
Minimum recommended requirements: Intel 650MHz PIl1 CPU, 256MB RAM.

DirectSound Sound Card:

Windows98SE: Turtle Beach Montego I Sound Card (Montego |1 digital output is not
supported under Windows2000)

Windows2000: Creative Audigy

SLAB Client/Server Network

100MBit Ethernet Card
100MBit Ethernet Hub
2 100BaseTX (RJ-45) Ethernet Cables (client to hub and hub to SLAB Server)

Digital Output (optional)

Digital Output Device:
Windows98SE: Turtle Beach Montego Il Digital 1/0 Upgrade
Windows2000: Creative Audigy

Digital-to-Analog Converter:
Lucid Technology ADA1000 A/D, D/A Converter

Headphone Display

Headphone Amplifier (optional):
Symetrix SX204 Headphone Amplifier

Headphones:
Sennheiser HD 545 Reference Headphones

Top

| nstallation

SLAB User Release Installation I nstructions

SLAB isavailable for download at the SLAB Home Page:
http://human-factors.arc.nasa.gov/SLAB.

For installation instructions, see the S AB User Release Installation Instructions under the
Downloads section of the SLAB Home Page.

Windows Sound Schemes

When listening to SLAB with headphonesit is probably best to disable system sounds by
selecting the "No Sounds' sound scheme under Control Panel | Sounds and Multimedia | Sounds
| Scheme. Otherwise, an uncomfortably loud system sound might occur while listening to

file://IC|/SLAB/doc/user/chapters/introduction.htm (2 of 4) [10/1/2003 11:36:27 AM]


http://human-factors.arc.nasa.gov/SLAB

Introduction

SLAB.
Speakers Property

Some sound peripherals process the output signal based on the type of display attached to the
output (e.g., headphones versus desktop speakers). When using SLAB, it is best to select an
unprocessed output path under Control Panel | Sounds and Multimedia | Audio | Advanced |
Speakers | Speaker Setup.

Top

Citing SLAB

Asacourtesy, the use of SLAB in published research should be acknowledged in the publication
by citing the SLAB Home Page:

[1] http://human-factors.arc.nasa.gov/SLAB

The preferred paper reference describing the SLAB User Release and its implementation:

[2] Miller,J. D. and Wenzel, E. M., "Recent Developmentsin SLAB: A Software-Based System
for Interactive Spatial Sound Synthesis,” Proceedings of the International Conference on
Auditory Display, ICAD 2002, Kyoto, Japan, pp. 403-408, 2002.

Top

Acknowledgements

| would like to thank Beth Wenzel for her support, feedback, and for making SLAB possible,
Jonathan Abel for providing numerous physical modeling and signal processing examples, Mark
Anderson for programming assistance, and both Mark Anderson and Durand Begault for testing
the waters and offering many helpful suggestions. | would also like to thank Marlene Hernan,
Robert Padilla, and Robin Orans.

--joel

Developers

Joel Miller lead designer and programmer
Jonathan Abel  physical modeling and signal processing MATLAB scripts

Mark Anderson TrakLib Fastrak driver, SLABScape 3D View, SLABScape SLABScript
Editor, sockets and registration database assistance

Mitch Clapp SLABScape 3D View models and textures, web-based registration code

Top

file://IC|/SLAB/doc/user/chapters/introduction.htm (3 of 4) [10/1/2003 11:36:27 AM]


http://human-factors.arc.nasa.gov/SLAB

Introduction

SLAB User Manual

Last Updated: September 5, 2003

file://IC|/SLAB/doc/user/chapters/introduction.htm (4 of 4) [10/1/2003 11:36:27 AM]



Overviews

Overviews

o SLAB Render API
» Coordinate System
» Sound Sources

o HRTF Databases

e Error Handling
o Tips

SLAB Render API

When developing SLAB applications, SLAB is accessed through the SLAB Render AP
(SRAPI) encapsulated in the CSLABAPI interface. CSLABAPI is an abstract base class used to
access the CSLABHost and CSLABClient objects. If you wishto run SLAB locdly (i.e., on the
same machine as the SLAB application), the CSLABHost object should be used. Conversely, if
you wish to run SLAB remotely (i.e., using a network and a dedicated SLAB server
workstation), the CSLABClient object should be used. By using the CSLABAPI interface, you
can select between local or remote usage at run-time. All host, client, and server functions are
available through CSLABAPI. If the function isn't supported for the selected network mode, the
function does nothing (e.g. if you alocate a host object and call a client function, the function
simply returns).

Note: the " Server Functions' seen in SLABAPI.h are part of the CSLABServer classinterface.
Thisclassisfor writing SLAB server applications and is not included in the SLAB User
Release. The SLAB User Release contains the SLABServer application for providing SLAB
server functionality.

Further information on the SLAB Render API is available in the SRAPI Reference Manual.

Top

Coordinate System

SLAB uses aright-handed, FLT (Front-Left-Top) coordinate system (i.e., if fingers curled from
front to left, thumb points to top).

Location

+x front, through nose

+y left, through left ear

+z top, through top of head

Orientation
-yaw to right
+yaw to left
-pitch up

file://IC|/SLAB/doc/user/chapters/overviews.htm (1 of 7) [10/1/2003 11:36:27 AM]


file:///C|/SLAB/doc/ref/index.html

Overviews

+pitch down
+roll right
-roll left

Polar

+azimuth to right
-azimuth to left
+elevation up
-elevation down
+range forward
-range backward

Convolvotron and Polhemus azimuth and € evation

These definitions are compatible with the Polhemus I sotrak and Fastrak head trackers and the
Crystal River Engineering Convolvotron coordinate systems with the following exceptions:

SLAB azimuth = - Convolvotron and Polhemus azimuth
SLAB and Convolvotron elevation = - Polhemus el evation

Polhemus transmitter and receiver

The physical placement of the Polhemus transmitter and receiver often results in the following
configuration (as specified on the Fastrak transmitter): +X forward, +Y right, +Z down. Since
SLAB uses+Z up and +Y left, thesignsof Y, Z, Yaw, and Pitch must be changed if your tracker
driver follows this convention.

Top

Sound Sour ces

SLAB supports two types of sound sources, Windows wave files (see SrcFile()) and software
signal generation (see the SrcGen functions). All sound sources must be allocated before calling
RenderStart() to initiate real-time rendering. A sound sourcesisgiven an ID valuewhen itis
allocated. ThisID is passed to the source control functions. The number of sources availableis
limited by the computational resources of the SLAB workstation.

To change the source allocation configuration, call SrcFree() to free all sound sources. SrcFree()
cannot be called while processing. Once the previous sources have been freed, a new source
configuration can be allocated.

To generate sound sources not supported by the SrcGen functions, use SrcFile() in conjunction
with a Windows wave file editing application. Since SrcFile() can loop wave files continuously,
it can be used to create fixed periodic sound sources.

There are two methods of muting a sound source:

« Cdl SrcGain() using adB gain value much lower than -97.0 dB (-96.3 dB is the dynamic
range of 16-hit integer). Note: this does not affect the processing performed. The
computational load remains the same.

« Call SrcEnable() to disable the source. The sourceis no longer rendered, eliminating the
source entirely. Disabling a source reduces computational load.

file://IC|/SLAB/doc/user/chapters/overviews.htm (2 of 7) [10/1/2003 11:36:27 AM]



Overviews

See Also: CSLABAPI Source Functions in the SRAPI Reference Manual.

Top

HRTF Databases

SLAB HRTF (Head-Related Transfer Function) databases contain the HRIR (Head-Related
Impulse Response) and ITD (Interaural Time Delay) information needed to perform
gpatiaization. The default SLAB HRTF databaseis"jdm.dh" and the default HRTF directory is
"<install dir>\HRTF". Use the SLABScape application to change these defaults (see menu item:
SLAB | SLAB Registry Settings...).

SLAB HRTF Database Format - Version 1

Version 1 databases are binary fileswith all values stored in 16-bit integer. They typicaly have
the suffix .dat. The following parameters are assumed:

Azimuth, number of = 13, (1180 150 120 90 60 30 0-30-60 -90 -120 -150-180)
Azimuth increment = 30

Azimuth zero index = 6

Elevation, number of = 11, (90 7254 36 18 0-18 -36 -54 -72-90)
Elevation increment = 18

Elevation zeroindex =5

Number of ears= 2

Number of ITD points= 143

ITD positive = left ear lag

ITD negative = right ear lag

Number of HRIR points = 256

Number of HRIR sample bytes=2 (16-bit integer)

Maximum HRIR sample value = 32767

Minimum HRIR sample value = -32768

Float HRIR sample scaling factor = 32768.0f

The table below illustrates the HRIR and I TD data storage format (ordered by individual data

values):
AZ EL
180, 90, left ear, hrir pt 0 Left ear points
hrir pt 255
180, 90, right ear, hrir pt O Right ear points
hrir pt 255
180, 72, left ear, hrir pt 0 Elevations (grouped by azimuth)

-90, right ear, hrir pt 255
150, 90, left ear, hrir pt 0 Azimuths

180, - 90, right ear, hrir pt 255

file://IC|/SLAB/doc/user/chapters/overviews.htm (3 of 7) [10/1/2003 11:36:27 AM]


file:///C|/SLAB/doc/ref/index.html

Overviews

180, 90, del ay Delays
180, 72, del ay

2180, -90, del ay

SLAB HRTF Database Format - Version 2

Version 1 to Version 2 changes:

1) The database now contains a header.

2) The 16-hit integer data type has been changed to single-precision floating-point.
3) The database files typically have a.dh suffix.

HRTF Database Header

t ypedef struct

short nVersion;

char st rName[ 32] ; /1l subject's nane

char strDat e[ 8]; /1 date neasured

char strComent [256]; // text comment

short nAzl nc; /1 degree increment of az |ocations
short nEl Inc; /1 degree increnment of el |ocations
short nNunPts; /1 nunber of HRIR points per entry

| ong | Sanpl eRat e; /'l sanple rate when capturing HRIR

} HRTFHeader;

The HRIR and ITD dataimmediately follow the header as specified above for Version 1. The
azimuth and elevation increments and the number of HRIR points are now determined from the
header.

See Also: CSLABAPI::.LStHRTF() in the SRAPI Reference Manual.

Top

Error Handling

There are two error catching modesin SLAB: Non-Process Time and Process-Time. When
SLAB isprocessing (i.e., after acall to RenderStart()), SLAB isin the Process-Time error
catching mode. When SLAB is not processing (i.e., after the SLAB object is allocated, after a
call to RenderStop(), or after an error), SLAB isin the Non-Process Time error catching mode.

Why two modes? Two reasons:

1. API Thread and Process Thread
SLAB runsin two threads of execution, the APl Thread (same as the user's thread) and
the Process Thread, athread created during a call to RenderStart(). Errors can occur
inside the Process Thread without an API call (e.g., astate error in a Render plug-in not
directly connected to an API call). The user cannot check the return value of an AP
function to catch this error (unless "polling" and then only during the next "error poll”,
see below).

file://IC|/SLAB/doc/user/chapters/overviews.htm (4 of 7) [10/1/2003 11:36:27 AM]


file:///C|/SLAB/doc/ref/index.html

Overviews

2. Update Loop in Client/Server Mode
Typicaly, after acall to RenderStart(), the SLAB user will be updating an acoustic scene
in some form of update loop (e.g. capturing listener position information with a head
tracker or generating a source trgjectory). For an update rate of 120Hz, the update loop is
executed every 8.3ms. In client/server mode, it would be inefficient to send error packets
from the server to the client for every SRAPI call in the update |oop.

Blocking and Non-Blocking Functions

In client/server mode, the SRAPI functions are broken into two groups, blocking functions and
non-blocking functions. Blocking functions wait for an error packet to be returned from the
server, non-blocking functions do not. Blocking functions are typically called prior to
processing. Most non-blocking functions can be called at any time. Whether afunctionis
blocking or non-blocking is documented in the function's Remarks section in the SRAPI

Reference Manual.

Non-Process-Time Error Catching

Function Return Values

Almost all SRAPI callsreturn SLABError. Non-Process-Time errors are typically caught with
function return values. Non-blocking function errorsin client/server mode, however, can only be
caught by polling a blocking function (polling is discussed below).

Process-Time Error Catching

There are two methods for catching Process-Time errors:

1. Error Messaging
When using Error Messaging, SLAB sends error messages to the user's application via
Windows messaging. Before calling RenderStart(), call SetNotify() specifying a
notification window and message ID value. If aProcess-Time error occurs, the
notification message will be sent to the notification window. To catch the message, map
the notification message 1D to a message handler using a CWnd message map. Use an
error query function to verify the notification corresponds to an error (notifications can
also be used to indicate the completion of one-shot playback).

2. Error Polling
Whenever an error occurs, SLAB enters an "error state." In an error state, all SRAPI

functions return the current error. Error Polling refers to catching existing errorsvia
function return values or error status functions. In other words, the user islooking for an
error not necessarily caused by the function itself. For example, consider several
successive non-blocking SRAPI function callsin client/server mode. If the last function
call returns an error, the error actually belongs to a previous function call. Thisdelay is
due to the time it takes the error to propagate through the messaging system and the
network

Error Catching Summary

Client/Server Mode Client/Server Mode
Host Mode Methods Function Types Methods
- Blocking Function return value, poll
N_on Process return value, poll ’ g - - ’ - p.
Time ]Non-BIockl ng Function ]bl ocking function poll
|Blocking Function Ireturn value, poll, message

file://IC|/SLAB/doc/user/chapters/overviews.htm (5 of 7) [10/1/2003 11:36:27 AM]


file:///C|/SLAB/doc/ref/index.html
file:///C|/SLAB/doc/ref/index.html

Overviews

returnvalue, poll,  [Non-Blocking Function,

Process Time '
message Process Thread POTl, Message

Error State
SLAB enters an "error state" whenever an error occurs.

In an error state:
« rendering is stopped
« the sound output stream is stopped
e SCript processing is stopped
« al functions returning SLABError return the current error
« error information can be queried via ErrorState(), Error(), ErrorString(), and ErrorStack()
« error state maintained until explicitly cleared with ErrorClear()

Error Functions Overview

The following functions exist for querying error information and clearing error state:
o ErrorState(): returnstrueif in error state, false if not
o Error(): returnsthe current SLABError
« ErrorString(): returns a string describing the current error
« ErrorStack(): returnsastring providing call stack error information for the current error
o ErrorClear(): clearserror state
« SetNotify(): setsthe notification window and the notification message ID value
« LogName(): setsthe name of the log file used for logging error information in host-mode
o Reset(): resets SLAB

See Also: CSLABAPI Error Functions in the SRAPI Reference Manual.

Top

Tips

Tips for writing psychoacoustic experimentation software, etc.:
« To disable source-listener range-dependent gain scaling use SrcSpread( 0).

« To place sound sources by specifying azimuth and elevation use L stPosition( 0.0, 0.0,
0.0, 0.0, 0.0, 0.0) and SrcLocatePolar( idSrc, az, €, range). Note: SLAB does not have
alistener-relative source location function.

« To specify sound source time delays use LstPosition( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) and
SrcLocatePolar( idSrc, az, e, dSoundSpeed * time_delay ).

Top

file://IC|/SLAB/doc/user/chapters/overviews.htm (6 of 7) [10/1/2003 11:36:27 AM]


file:///C|/SLAB/doc/ref/index.html

Overviews

SLAB User Manual

Last updated: May 29, 2003

file://IC|/SLAB/doc/user/chapters/overviews.htm (7 of 7) [10/1/2003 11:36:27 AM]



SLAB Render Plug-Ins

SLAB Render Plug-Ins

e Overview

o Starter Project

Overview

All rendering in SLAB is performed with SLAB Render plug-ins. SLAB Render plug-ins are
subclassed from CRPlugln, built as DLLs, and placed in the SLAB bin\rplugin directory. All
plug-ins found in this directory will be read into memory when a CSLABAPI object is allocated.
The SRAPI Render Functions exist for querying and selecting plug-ins. Through the CScene
class, Render plug-ins are given access to SLAB's scene parameters, input delay lines, and output
stream.

See Also: CSLABAPI Render Functions, CRPlugin, and CScene in the SRAPI Reference
Manual.

Top

Starter Project

The rplugin and rdiotic projects in the SLAB src\ directory can be used as Render plug-in
examples. The rplugin project is also used as a starter project for creating user plug-ins. The
rdiotic project contains the source code for the SLAB monotic and diotic renderers and shows
how to place multiple plug-insin one DLL.

Follow the steps below to create your own plug-in:

1. InMSVC, create anew DLL project using New | Projects | Win32 Dynamic-Link
Library. Choose"A simple DLL project.” when prompted for the type of DLL project
to create.

2. Delete the generated .cpp from the project and from the directory.

3. Copy rplugin.cpp from SLAB's src\rplugin\ directory to your new project directory.
Renameit if you wish. Add it to the project.

4. Enter the SLAB include\ directory to Project | Settings... | Settings For: All
Configurations| C/C++ | Preprocessor | Additional include directories.

5. For SLAB to find your DLL it must be reside in the SLAB bin\rplugin\ directory. For
debug DLLs, enter the name of your DLL appended to the SLAB bin\rplugin\ path as
follows: under Project | Settings... | Settings For: Win32 Debug | Link | Preprocessor |
Output file name, enter "<SLAB install dir>/bin/rplugin/r*d.dll" where *' denotes a
name of your choosing ('r' indicatesthe DLL isa"render" plug-in). For release DLLS,
under Project | Settings... | Settings For: Win32 Release | Link | Preprocessor |
Output file name, enter "<SLAB install dir>/bin/rplugin/r*.dil".

file://IC|/SLAB/doc/user/chapters/plugin.htm (1 of 2) [10/1/2003 11:36:27 AM]


file:///C|/SLAB/doc/ref/index.html
file:///C|/SLAB/doc/ref/index.html

SLAB Render Plug-Ins

SLAB User Manua

Last Updated: May 29, 2003

file://IC|/SLAB/doc/user/chapters/plugin.htm (2 of 2) [10/1/2003 11:36:27 AM]



Source Code

Source Code

o SLABClient

SLABClient

The source code to the SLABClient library can be found in <install dir>\lib\src\SLABC\. The
communication between the client and the server occurs in Wintel byte order (not network byte
order). Thereasoning behind thisis (1) we are a Wintel-based lab and therefore we do not want
to swap and unswap for each datavalue, and (2) | would have to modify both the client code and
the server code to use network byte order; asthey say, if it ain't broke, don't fix it...

Currently, the SLABWire layer isnot part of the SLAB User Release. Thus, to compile the
SLAB client, you'll needtoset _ SLABW_to0in SLABAPI.cpp. Thissimply omits support for
the Windows-specific SLAB registry variables. So as to not overwrite the User Release library,
you'll probably want to remove the "..\..\" from the "Library | Output file name" project setting.

Should you choose to port the client to another platform, it is recommended you have access to
Microsoft Visua C++ for the MFC source code. The client software uses MFC for the sockets
implementation. Please post to the SLAB mailing list if you take thison. I'll offer what help |
can. It would be great to have Linux and Mac support...

Top

rdiotic

<install dir>\src\rdiotc\ contains the source code for the monotic and diotic SLAB Render
plug-ins. See starter project.

Top

rplugin
<install dir>\src\rplugin\ contains the SLAB Render plug-in starter project.

Top

file://IC|/SLAB/doc/user/chapters/source.htm (1 of 2) [10/1/2003 11:36:27 AM]



Source Code

SLABX

<install dir>\src\SLABX\ contains an SRAPI-based exampl e application.

Top

| nstaller

<install dir>\src\Installer\ contains the Visual Studio.NET Setup and Deployment project for the
SLAB User Release. This project creates the SLAB.msi Windows Installer file. The Installer
project can be used to distribute works based on SLAB. Seethe SLAB Software Usage
Agreement for the legal terms governing SLAB-related distribution.

Top

SLAB User Manua

Last updated: May 29, 2003

file://IC|/SLAB/doc/user/chapters/source.htm (2 of 2) [10/1/2003 11:36:27 AM]



Example Application

Example Application

The SLAB User Release includes the SLABX example application which demonstrates how to
write and build a standard SLAB application using Microsoft Visua C++ (hereafter MSVC). The
SLAB User Release has only been tested with the Microsoft Visual C++ compiler.

SLABX contains two demos, Trajectory Demo and HRTF Database Per Source Demo. In the
Trajectory Demo, a white noise sound sourceis placed in acircular trgjectory about the listener's
head. Inthe HRTF Database Per Source Demo, one wave file sound source is placed at
(0.5m,0.5m,0.0m) and another is placed at (0.5m,-0.5m,0.0m). The user can select between three
different HRTF databases for each source.

All instances of the directory "\SLAB\" below should be replaced by your SLAB installation
directory.

SLABX MSVC Dialog Application

SLABX isastandard MSVC dialog application. It was created using the following steps under
MSVC 6.0:

New Project

New | Projects | MFC AppWizard (exe)

MFC AppWizard - Step 1. Select dialog based.

MFC AppWizard - Step 2 of 4: Uncheck About box (keep it simple), check Windows Sockets (for
client/server support).

MFC AppWizard - Step 3 of 4: No change.

MFC AppWizard - Step 4 of 4: No change. Finish.

SLAB applications need to be linked with the SLAB, Windows Multimedia, and DirectSound
libraries. Toavoid "DLL hell", static linking is recommended.

Project Settings

C/C++ Tab | Category: Preprocessor | Additional include directories
Settings For: All Configurations

Enter: \SLAB\include

Link Tab | Object/library modules:

Settings For: Win32 Debug

Enter: \SLAB\lib\slabhmd.lib \SLAB\lib\slabcmd.lib (the SLAB Host and Client Multithreaded
Debug libraries)

(for a Release Build, use slabhnr.lib and slabcmr.lib)

Link Tab | Object/library modules:

Settings For: All Configurations

Enter: winmm.lib \apps\imssdk\lib\dsound.lib (the Windows multimedia and DirectSound
libraries)

(for dsound.lib, use the pathname for your installation of DirectSound)

In SLABX, only two files contain SLAB code, SLABXDIg.cpp and SLABXDIg.h. These two
files are discussed below. Each has been edited to emphasize the SL AB-specific code.

file://IC|/SLAB/doc/user/chapters/example.htm (1 of 9) [10/1/2003 11:36:28 AM]



Example Application

SLABX InterfaceFile

/1 SLABXDI g.h : header file

SLABAPI . h isthe only SLAB header file necessary.
#i ncl ude "SLABAPI.h" // SLAB

class CSLABXDI g : public Cbhialog

{
/Il Attributes

pr ot ect ed:

All SLAB interaction occursthrough one CSLABAPI object. Declarea CSLABAPI* to
reference this object.

CSLABAPI *  m pSLAB;

/1l 1nplenmentation

pr ot ect ed:
/1 Cenerated nessage map functions
/1 {{ AFX_NMSGE CSLABXDI @)

SLAB reports process-time errorsvia a Windows command message. You specify the
message to receive using SetNotify(). The easiest way to create and handle a message ID isto
add an invisibledummy button to a dialog using MSVC's ResourceView. Next, createa
message handler for the dummy button (ID ID_SLAB_NOTIFY):

af x_msg void OnSl abNotify();
/'1}} ARX_MSG
¥

SLABX Implementation File

/1 SLABXDI g.cpp : inplenentation file

Alter these pathsto reference your installation directory!

/1 wave file to play during HRTF per source denpo
#define WAVE_FI LE "\\ SLAB\\ wavs\\voi ce. wav"

/|l default SLAB Server |P address
#defi ne DEF_SERVER "I ocal host ™"

/1 HRTF dat abases for HRTF per source denp

#defi ne HRTF_DB "\\ SLAB\\ HRTF\ \ j dm sl h" /1 nornal
#define HRTF_DB_ME "\\SLAB\\HRTR\\jdm ne.dat" // HRIRs equal
#define HRTF_DB I E "\\SLAB\AHRTRF\\jdm .ie.dat" // |1TDs equal

e e e
/1 DestroyW ndow()

BOOL CSLABXD g: : Destr oyW ndow()
{

SL AB should be stopped and freed before the program exits. DestroyWindow() isthe safest
placeto perform clean-up related to Windows r esour ces.

file://IC|/SLAB/doc/user/chapters/example.htm (2 of 9) [10/1/2003 11:36:28 AM]



Example Application

/1 if SLAB processing, stop
if( mpSLAB )
OnStop() ;

return CDi al og: : DestroyW ndow() ;

R R
/1 OnStop()

voi d CSLABXDI g: : OnSt op()

[l if timer allocated, kill it (trajectory deno)
if( mnTiner )
Ki Il Ti mer (m._nTi ner);

Render Stop() stopsthe processing started by Render Start(). LstHRTFFreg() freesan HRTF
database. SrcFreeg() freesall allocated sound sources. Deleting the CSLABAPI object frees
all resour ces associated with SLAB. Thesefour stepsarethe preferred way to exit SLAB. A
time-stamped entry can be madeto alog filewith LogEntry() and LogTime() to indicate
when SLAB was exited. Thelog file'smain purposeisto providea SLAB error record.

/1 stop processing and free sources
m_pSLAB- >Render St op() ;
i f( m.idHRTF )
m_pSLAB- >Lst HRTFFree( m_i dHRTF );
i f( midHRTFne )
m pSLAB- >Lst HRTFFree( m_i dHRTFne );
if( midHRTFie )
m pSLAB- >Lst HRTFFree( m.i dHRTFi e );
m i dHRTF = NULL;
m i dHRTFme = NULL;
m i dHRTFi e = NULL;
m pSLAB- >Sr cFree();
m i dSrcO = NULL;
m.idSrcl = NULL;
m pSLAB- >LogEntry( "SLABX Exit" );
m _pSLAB- >LogTi me() ;

del ete m pSLAB;
m pSLAB = NULL;
}

e e e
/1 OnSLABNotify() - SLAB error reporting

voi d CSLABXDI g:: OnSl abNot i fy()
{

static char strFormat[] = "%\r\n\r\nDetails:\r\n"

B T \r\in%s";
char* strError;

file://IC|/SLAB/doc/user/chapters/example.htm (3 of 9) [10/1/2003 11:36:28 AM]



Example Application

/1 if there was a SLAB error, display error, close SLAB
if( mpSLAB & m pSLAB->ErrorState() )

{

A one sentenceerror description isavailablefrom ErrorString(). Detailed error
information can be obtained from Error Stack(). Oncetheerror hasbeen reported, the user
clearstheerror with ErrorClear(). The safest responsetoa SLAB error isto exit SLAB.

strError = (char*) malloc( strlen( strFormat ) +
strlen( mpSLAB->ErrorString() ) +

strlen( m pSLAB->ErrorStack() ) );

sprintf( strError, strFormat, m pSLAB->ErrorString(),
m _pSLAB- >Error St ack() );

m _pSLAB- >Error d ear ();
OnStop() ;

Af xMessageBox( strError );
free( strError );

/1 OnStartTraj ()

void CSLABXDI g:: OnStartTraj ()
{

Userscan run SLAB locally on their workstations or remotely on a SLAB Server. Local
usageisreferred toas" Host Mode" and remote usageisreferred to as” Client/Server
Mode." Theserver modeisdetermined by thetype of SLAB object allocated. To use Host
Mode, allocate a CSL ABHost object using the SLABAPIHost() function. To use
Client/Server Mode, allocate a CSL ABClient object using the CSLABAPIClient() function.
The objects should be accessed through the CSLABAPI interface. When using
Client/Server Mode, you need to specify the | P address of the SLAB Server.

/] create host-node or client/server-node CSLABAPI obj ect
i f( m_buttonHost Mode. Get Check() )

m pSLAB = SLABAPI Host () ;

}
el se
{ .
CString cstrServer;
/1l get the SLAB Server |P address fromthe edit control
m edi t Server. Get W ndowText ( cstrServer );
/1 SLAB Server
m pSLAB = SLABAPIClient( (char*) (LPCSTR) cstrServer );
}

/1 make sure CSLABAPI object allocated
if( 'mpSLAB )

Af xMessageBox( "Failed to allocate SLAB object!" );

file://IC|/SLAB/doc/user/chapters/example.htm (4 of 9) [10/1/2003 11:36:28 AM]



Example Application

return;

}

Use SetNotify() to select the window to receive SL AB process-time error messages. Y ou
must also specify the command message ID that is sent when an error occurs. SLAB
process-time error handling is performed by handling this message. Since SLAB isa
real-time system, errors can occur between function calls (e.g. a sound output buffer
drop-out). Messaging isa convenient way to catch theseerrors.

/1 set SLABAPI notification w ndow

/1 Note: ID SLAB NOTIFY is the ID of an invisible dutmy button created
/1l expressly for SLAB notification

m pSLAB- >Set Noti fy( this, ID SLAB NOTIFY );

The SLAB log fileisprimarily used asan error record. Thisfeatureisnot mandatory. The
filetouseasthelogfileisset with LogFile() and log file entries are made with LogEntry().
Oncealogfileis specified, SLAB will add entriesto thelog file whenever an error occurs.

/'l set SLABAPI host log file (ignored in client node)
m _pSLAB- >LogNane( " SLABX" );
m pSLAB- >LogEntry( "SLABX Init" );

SLAB uses DirectSound for low-latency audio playback. When the write buffer isfull, the
buffer contentsaretransferred to the DirectSound output buffer. These parametersare
modified to tune the latency/robustness tradeoff. Thelower the output latency, the less
robust the playback and vice versa. The output latency isbasically the output buffer size (in
bytes) divided by 176400 bytes/second (2 (stereo) * 2 bytes/sample (16-bit samples) * 44100
samples/second (sampling rate)). Thus, the output latency with the configuration below
would be 8192 bytes/ 176400 bytes/second = 46ms. For WDM drivers (Win2k), an
additional 20ms of latency exists dueto the WDM KMixer.

/1 init DirectSound output device (output and wite buffer sizes in bytes)
m pSLAB- >Qut DS( 8192, 512 );

SmoothTime() selectsthetime constant used for DSP parameter tracking. Asthesceneis
updated, new DSP parametersare generated. To avoid audible artifacts, the DSP
parameter s are smoothed from one set of parametersto the next. Higher time constants
reduce the chance of audible artifacts, but the system response to scene updates may become
dluggish. Lower time constantsincrease the likelihood of audible artifacts, but provide
better responsiveness.

FIRPoints() adjuststhe size of the FIR filter used torender HRTFs. The FIR filter size can
be any power of two between 16 and 128. The size of thefilter can bereduced to free up
CPU resources.

/1 init signal processing paraneters
m _pSLAB- >Snoot hTi me( 15.0 );
m _pSLAB- >FI RPoi nt s( 128 );

Several functions modify sour ce parameters. SrcRadius() setstheradius of the source and
affects how fast the sound's volume decr eases as the sour ce-listener range increases.
SrcGenNoise() allocates a noise generator, returning asourcelD. ThesourcelD isused asa
parameter to the sour ce scene functionsto select the sour ce to modify. The amplitude
parameter adjuststhe minimum and maximum value of the samples generated. Thisvalue
can bethought of asan initial volume control. Once processing isbegun, only SrcGain() can
be used to adjust the volume level.

file://IC|/SLAB/doc/user/chapters/example.htm (5 of 9) [10/1/2003 11:36:28 AM]



Example Application

Sour ces can be placed using Cartesian coor dinates with SrcL ocate() or using polar
coordinates with SrcL ocatePolar (). The source gain isset with SrcGain() using a double
valued dB scale (e.g. 0.0 dB = passthru, -96.0 dB = off for 16-bit integer input). SrcEnable()
enablestherendering of the source. When a sourceisdisabled, rendering calculationsare
not performed, reducing CPU usage. SrcEnable( ?, false) isan efficient way to mutea
sour ce (versusthe SrcGain() method used in this example).

/1 init general source paraneters
m pSLAB- >SrcRadi us( 0.2 );

/1 init source-specific paraneters

m dAz = 0. 0;

m i dSrc0 = m pSLAB->SrcCGenNoi se( 4096 );

m pSLAB- >SrcLocat ePol ar( m.idSrc0, mdAz, 0.0, 2.0 );
m pSLAB- >SrcGai n( m.idSrc0, 0.0 );

m pSLAB- >Sr cEnabl e( m.i dSrc0O, true );

Threefunctions modify listener parameters. If thelistener position data comes from a head
tracker (e.g. Polhemus Fastrak), the function L stSensor Offset() should be used to specify the
location of the head tracker sensor. LstPostion() specifiesthe position of thelistener.
LstHRTF() specifiesthe HRTF database used for spatial rendering. The HRTF databaseis
loaded into memory with LstHRTFLoad(). To decreasethelikelihood of sound output
underflow, load HRTFsbeforerendering isstarted. Be sureto free the database with
LStHRTFFreg().

/[l init listener paraneters
m pSLAB- >Lst SensorOffset( 0.0, 0.0, 0.0 );
m pSLAB- >Lst Position( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 );

m i dHRTF = m pSLAB- >Lst HRTFLoad( HRTF_DB );
if( !'midHRTF )
{

Af xMessageBox( "Failed to load HRTF:\r\n" HRTF_DB );
OnStop() ;
return;

}
m pSLAB- >Lst HRTF( m i dHRTF ) ;

Render Start() initiatesrendering.

/] start rendering
m pSLAB- >Render St art (  RENDER_SPATI AL ) ;

[/l start a Wndows tinmer for updating trajectory
/1 note: 55ms is the shortest period possible with SetTimer()
mnTinmer = SetTinmer( 1, 55, NULL );

}

R R R
/1 OnTinmer()

voi d CSLABXDI g: : OnTi mer (Ul NT nl DEvent)
[l increment azinuth
m dAz += 0.055; // 1 rad/s

if( mdAz >= dPIx2 )
m dAz -= dPI x2;

file://IC|/SLAB/doc/user/chapters/example.htm (6 of 9) [10/1/2003 11:36:28 AM]



Example Application

SLAB doesnot have an updaterate per se. Each scene update causesthe DSP parametersto
be updated almost instantaneously (within 64 samples). Thus, the frequency of scene
updates determinesthe updaterate of SLAB. In thisexample, a scene update occursevery
55ms, yielding an effective updaterate of 18Hz. A typical SLAB updaterateis 120Hz.

/1 update source |ocation
m pSLAB- >Sr cLocat ePol ar( 0, mdAz, 0.0, 2.0 );

CDi al og: : OnTi er (nl DEvent) ;

/1 OnStartHrtf()

voi d
CSLABXDI g: : OnStartHrtf ()
{

Most of thisfunction isidentical to OnStartTraj() (see above). Thisfunction differsonlyin
the way the sources are allocated and placed. SrcFile() iscalled twiceto allocate two looped
wave file sound sources. SrclL ocate() placesthe sourcesusing Cartesian coordinates.

/1 init source-specific paraneters
m i dSrc0 = m pSLAB->SrcFil e( WAVE _FI LE
m i dSrcl = m pSLAB->SrcFil e( WAVE FI LE
m pSLAB- >SrcLocate( m.idSrcO, 0.5, 0.5, 0.0);
m pSLAB- >SrcLocate( m.idSrcl, 0.5, -0.5, 0.0 );
m pSLAB- >SrcGain( m.idSrc0, 0.0 );
m pSLAB->SrcGain( m.idSrcl, 0.0 );
m pSLAB- >Sr cEnabl e( m.i dSrcO, true );
m pSLAB- >Sr cEnabl e( m.idSrcl, true );

}

e e R
voi d CSLABXD g:: OnSrclnorm()

if( !'mpSLAB ) return;

LstHRTF() can be used to change the HRTF database during real-timerendering. This
allowsthe user to comparethe sound of one HRTF database to another. In thisexample,
three HRTF databases are available: one normal (the default SLAB HRTF database), one
modified so that all HRIRs equal the Oaz,0el magnitude, and another modified so that all

| TDs equal the Oaz,0el ITD (Oaz,0el ITD =0 samples). Thus, thetwo primary spatialization
cues areisolated and compared. Thefunctions OnSrclme() and OnSrclieg() load the
modified HRTF databases (see SLABXDIg.cpp).

SL AB supportslistening to each sound sour ce through itsown HRTF database. If a second
parameter to LStHRTF() exists, it specifies a sound sour ce/HRTF database association.

/1 normal map, source O
m pSLAB- >Lst HRTF( m_i dHRTF, m.i dSrcO );

file://IC|/SLAB/doc/user/chapters/example.htm (7 of 9) [10/1/2003 11:36:28 AM]



Example Application

e e e T
voi d CSLABXD g:: OnSrclnute()

if( !'mpSLAB ) return;

SrcGain() allows sourcesto be gained or muted during real-timerendering. In thisfunction,
again of -120.0 dB ischosen as an arbitrary mute value. Since-120.0 dB isbelow the
dynamic rangethreshold for 16-bit integer, it will completely attenuate the source. Note:
even if asourceisnot heard, it isstill being rendered and, thus, consuming computational
resour cesl!

if( mbMitel )

{
/1 mute gain, -120dB

/1 (note: 20l 0gl0(1l/2716) = -96dB)

m _pSLAB- >SrcGai n( m.idSrc0, -120.0 );

m_but t onMut el. Set W ndowText ( "Unnute" );
}

el se

/1 pass-thru gain, 0dB

m pSLAB->SrcGin( m.idSrcO, 0.0 );

m but t onMut el. Set W ndowText ( "Mute" );
}

m bMutel = I'm bMitel;
}

A e e
voi d CSLABXD g:: OnSrc2nor m()

if( !'mpSLAB ) return;

Thisfunction issimilar to OnSrclnorm(), but setsthe HRTF database used for the second
sound sour ce.

/! normal map, source 1
m pSLAB- >Lst HRTF( m_i dHRTF, m.idSrcl );
}

e e e
voi d CSLABXD g:: OnSrc2nut e()

if( 'mpSLAB ) return;

Thisfunction issimilar to OnSrclmute(), but adjuststhe gain for the second sound sour ce.
if( mbMite2 )

/1 mute gain, -120dB

/1l (note: 20l 0gl0(1l/2716) = -96dB)

m _pSLAB- >SrcGai n( m.idSrcl, -120.0 );

m but t onMut e2. Set W ndowText ( " Unnute" );
}

el se
/1l pass-thru gain, 0dB

m pSLAB- >SrcGai n( m.idSrcl, 0.0 );
m but t onMut e2. Set W ndowText ( "Mute" );

file://IC|/SLAB/doc/user/chapters/example.htm (8 of 9) [10/1/2003 11:36:28 AM]



Example Application

4

m bMute2 = !'m bMut e2;
}

SLAB User Manud

Last Updated: May 29, 2003

file://IC|/SLAB/doc/user/chapters/example.htm (9 of 9) [10/1/2003 11:36:28 AM]



Applications and Utilities

Applications and Utilities

o SLABScape
SLABScape provides a graphical user interface for experimenting with the SLAB Render
API scene parameters. It isalso used to alter the SLAB Registry Settings (e.g., Default
HRTF).

o SLABServer

The SLABServer application allows aworkstation to be dedicated as a stand-alone SLAB
virtual audio server.

» Slabtools
The slabtools are MATLAB tilities for visualizing and manipulating HRTF data.

« Example Application
The SLABX example application demonstrates the use of the SLAB Render API.

SLAB User Manud

Last updated: June 30, 2003

file://IC|/SLAB/doc/user/chapters/apps.htm [10/1/2003 11:36:28 AM]



SLABScape

SLABScape

SLABScape provides a graphical user interface to the SLAB Render API. SLABScape also
allows the user to specify sound source trajectories, enable Fastrak head tracking, edit and play
SLAB Scripts, A/B different rendering strategies, and visualize the environment via a Direct3D

display.

Contents:

o Menus

e Toolbar

« Shortcuts

« Source Dialog
« Environment Dialog

o Listener Dialog

o Fastrak Settings Dialog

e« SLAB Settings Dialog

« SLABScript Editor

o Status Bar

M enus

Menu definitions:

o File
O

O

New - initializes scene parametersto their default settings.
Open... - prompts to open a.scn "SLAB Scene" file.

Note: SLABScape does not strictly adhere to the MFC (Microsoft Foundation
Classes) view/document model. If you attempt to reopen an open scene, MFC
prevents the open and does nothing. As awork-around, simply click the File New
button before reopening.

Save - saves the current scene. The sound source and listener controlled by
controller (tracker or Firefly) setting is not saved, nor isthe Render Plug-In ID if
itisabove RENDER_PLUGIN. Thisisbecauseitisnot known if the controller
or renderer will be available next time SLABScape is executed.

Save As... - prompts to save the current scene to afile.
Most Recently Used Files - lists recently used scenefiles.
Exit - exits the application.

Scene

file://IC|/SLAB/doc/user/chapters/slabscape.htm (1 of 8) [10/1/2003 11:36:28 AM]



SLABScape

= Source Dialog... - displays the Source Dialog.
= Environment Dialog... - displays the Environment Dialog.

= Listener Dialog... - displaysthe Listener Dialog.

o Controllers

» Fastrak Settings... - displays options for configuring a Polhemus Fastrak
tracker.

» Firefly Settings... - displays options for initializing and configuring
Firefly. These controls are currently implemented in-house only.

o Simulation Settings... - displays simulation parameter options for tick update rate
and hand control.

o Sources Displayed - sets the number of sources displayed in the visual display.

o Parameter Overlay - overlaysthe 2D view with source and listener scene
information. All distances are in meters, al anglesin radians. Azimuth,
elevation, and range are relative to the origin.

Sources:. X, Y, z, azimuth, elevation, range, gain
Listener: X, Yy, z, yaw, pitch, roll

o Update Rate - displays the update rate of the SLAB Renderer and the visual

display (the value in parentheses) on the status bar.

o Monitor SLAB Autos- if SLAB isin host mode, monitors the positions of the
sources and the listener as defined by the SLAB Renderer (the SLAB Renderer
can automatically update its own parameters when performing atrajectory or
when scripting).

o Toolbar - controlsthe display of the toolbar.
o StatusBar - controls the display of the status bar.

o Render - starts or stopsthe SLAB Renderer. Renders using the currently selected
renderer (see Plug-Ins menu).

o SLAB Settings... - provides access to all pre-render-time SLAB parameters
(except materials, see Environment Dialog). The signal processing parameters,
script settings, network settings, and output settings are set using this dialog.

o SLAB Registry Settings... - liststhe SLAB installation registry settings. The

user can modify the default HRTF and the default HRTF directory registry
settings using this dialog.

o SLABScript Editor... - displays the SLABScript Editor.

e Plug-Ins

o About Plug-Ins... - displays information about al plug-ins found in the SLAB
Render plug-in directory (<install dir>\bin\rplugin). The SLAB Renderer must be
started before plug-in information is available.

o Installed Plug-Ins- all SLAB Render plug-ins will be added to the Plug-Ins
menu after the SLAB Renderer is started.

Warning: Only the Left-Monotic, Right-Monotic, Diotic, and DioticV plug-ins are

file://IC|/SLAB/doc/user/chapters/slabscape.htm (2 of 8) [10/1/2003 11:36:28 AM]



SLABScape

affected by the M/D (monotic/diotic) gain setting on the source dialog. All other
plug-ins use the source gain setting. Thus, plug-ins that do not attenuate the
sound signal in their rendering model can result in asignificant volume increase
when selected! (e.g., "Spatial" attenuates the signal due to spherical spreading and
the head-related impul se response in addition to the gain setting; "Plug-In
Example" does not attenuate beyond the gain setting.)

The following plug-ins are included in the SLAB User Release:
Spatial - selects the spatial SLAB Render plug-in.

L eft-M onotic - selects the left-monotic SLAB Render plug-in.
Right-Monotic - selects the right-monotic SLAB Render plug-in.
Diotic - selects the diotic SLAB Render plug-in.

DioticV - selectsthe variable diotic (sourcey = 0.0) / monotic (sourcey left or
right) SLAB render plug-in.

o Plug-In Example - selects the example SLAB render plug-in (diotic).

o o o o g

o Help... - displaysthis help page.
o About... - displays about dialog box.

Toolbar

Toolbar button definitions (from left to right):

New - see Menus.

Open... - see Menus.

Save - see Menus.

Source Dialog... - see Menus.

Environment Dialog... - see Menus.

Listener Dialog... - see Menus.

SLAB Render - see Menus.

SLAB Settings... - see Menus.

HRTF 1 - selectsHRTF 1 defined in Listener Dialog.
HRTF 2 - selects HRTF 2 defined in Listener Dialog.
HRTF 3 - selects HRTF 3 defined in Listener Dialog.

Spatial - see Menus.

L eft Monotic - see Menus.
Right Monotic - see Menus.

file://IC|/SLAB/doc/user/chapters/slabscape.htm (3 of 8) [10/1/2003 11:36:28 AM]



SLABScape

« Diotic - see Menus.
« Parameter Overlay - see Menus.

« Zoom Out - zooms-out on the 2D view. The zoom level changes the source and listener
placement dlider ranges.

« Zoom In - zooms-in on the 2D view. The zoom level changes the source and listener
placement dlider ranges.

« 3D View - toggles between the 2D view and the 3D View. The 3D View isrendered
using Direct3D, so the quality of the display is determined by the Direct3D features of

your graphics card.
Top
Shortcuts
|Command Shortcut Key
=Sound Sour ces ;
|Control source number x 11,2,3,4
|Cycle control c
|Reset source location forward IEnd
0 .
|Down d
lIn [
|Out o
IMute/UnMute lIns
|Increase gain 9
|Decrease gain a
=Sound Source Trajectory ;
|Slower 's
|Faster If
|Start/Stop | Space
|Change direction |Enter
|Step trajectory I
=L istener ;
IMove to origin |Home
|Forward |Up Arrow
|Backward IDown Arrow

file://IC|/SLAB/doc/user/chapters/slabscape.htm (4 of 8) [10/1/2003 11:36:28 AM]




SLABScape

|Left |Left Arrow
Right IRight Arrow
IUp |Page Up
IDown |Page Down
Spin I

Top

Source Dialog

The Source Dialog allows the user to manipulate source parameters while rendering. The
dialog'slayout is similar to an audio mixer with a channel strip for each sound source. These
strips contain the familiar gain fader and mute button, but also include a source motion droplist, a
relative source location dialog button (REL), a current source controlled button (channel #), a
pause/play button (PAU), and arewind button (REW).

The source motion droplist contains five options:. None, Circle, Rectangle, Track, and Firefly.
The Circle and Rectangle trajectories are generated by SL ABScape, not the SLAB Renderer (the
SLAB Renderer has a built in trgjectory mechanism that is currently only supported by the
SLABScript Editor). The Circle and Rectangle trajectories occur in ahorizontal plane. The
Circleradiusis defined by theinitial radius. The Rectangle dimensions are determined by the
initial location of the source. Keyboard shortcuts provide further trajectory control. The Track
option enables source tracking. This causes the sound source to follow the location of a
Polhemus Fastrak tracker receiver. The tracker is opened using the "Open Tracker" button on
the "Tracker Settings" dialog (View | Controllers menu). Firefly allows a source to be located
using USB camera capture. Thisoption is currently implemented in-house only; it does nothing
in the User Release.

The REL button pops-up the Relative Source Location dialog. This allows the placement of a
source relative to the listener's head using azimuth, elevation, and range coordinates. This
operation places the listener at the origin. Relative source placement allowsoneto listento a
specific location in an HRTF database or to investigate the effects of HRTF interpolation.

The channdl# button determines the "current source." The current sourceis controlled viathe
Location sliders on the right side of the dialog and by using keyboard shortcuts.

The Monotic-Diotic Gain dlider sets the source gain for the Left-Monotic, Right-Monotic, Diotic,
and DioticV renderers. Warning: If both release and debug versions of the plug-in exist, the
debug version is not affected by thisslider. Thus, asignification increase in volume may result
if the debug version is chosen!

The "Allocate Sources..." button pops-up the "Source Allocation” dialog for alocating sound
sources (Noise, Sine, Square, and File).

The "Source Radius" droplist sets the radius of the current sound source. The "Source Spread"
droplist sets the spherical spreading coefficient for the current sound source (0 = none, 1 =
normal, 2 = exaggerated).

file://IC|/SLAB/doc/user/chapters/slabscape.htm (5 of 8) [10/1/2003 11:36:28 AM]



SLABScape

Top

Environment Dialog

The Environment Dialog controls features of the listening environment. These features include
the dimensions of a rectangular room, the materials of the room surfaces, and the number of
sound images modeled. The number of sound imagesis controlled by the Reflections array of
checkboxes. D refersto the direct path, XP to the positive x-axis plane, and so on. The surface
materials are selected via the Surface Materials dialog displayed by pressing the Materials...
button.

Top

Listener Dialog

The Listener Dialog controls the listener location and orientation, tracking options, and HRTF
database selection. The Tracker Enable button enables head tracking. This causes the listener to
follow the location of a Polhemus Fastrak tracker receiver. The tracker is opened using the
"Open Tracker" button on the "Tracker Settings" dialog (View | Controllers menu). Selecting the
Orientation Only button locks the listener at the origin while listener yaw, pitch, roll continue to
be updated.

The HRTFs... button displays the "HRTF Databases’ dialog. Thisdialog setsthe HRTF
databases |oaded by the HRTF 1, HRTF 2, and HRTF 3 toolbar buttons.

Top

Fastrak Settings Dialog

These settings initialize a Polhemus Fastrak electromagnetic tracking peripheral.

o Com Port - Select the com port connected to the Fastrak. The Fastrak communication
settings (DIP switches) must be set to 115200 bps, 8 data bits, no parity, no flow control.

« Hemisphere- Direction of valid Fastrak transmitter hemisphere (see Fastrak manual).

« Receiver 2 - Selecting "Hand" will enables and map the second Fastrak receiver to the
Hand. (The Hand is currently in development.) Enabling a second receiver drops the
Fastrak update rate from 120Hz to 60Hz.

« System Com - Typicaly, SLABScape sets the com settings using the Microsoft Comm
API. Some com devices do not support this feature (e.g., some USB-to-seria adapters)
and use the Device Manager com settingsinstead. These devices will cause "Open
Tracker" to fail. Selecting this option bypasses the Comm API settings.

Note: for com devices that support Comm API com settings, this option will cause the
com port to be initialized with the most recent Comm API settings. Thus, only use this
option if you haveto.

« Open Fastrak - Initiates communication with the Fastrak. Opening the Fastrak sets the

file://IC|/SLAB/doc/user/chapters/slabscape.htm (6 of 8) [10/1/2003 11:36:28 AM]



SLABScape

current settings and cannot be canceled.
« Save Settings - Saves the current dialog settings in the registry.
« Restore Defaults - Restores dialog settings default settings.
o OK - Setsdialog settings.
« Cancel - Resets dialog settings to previous settings.

Top

SL AB Settings Dialog

These settings initialize SLAB prior to rendering and are described in more detail as
non-process-time functions in the SRAPI Reference Manual.

« Signal Processing Parameters - see the SRAPI Reference Manual.

o Script Settings- if the "Process script file while rendering” checkbox is checked, the
specified file will be parsed the next time the SLAB Renderer is started.

o Network Settings- If the "Run SLAB in Host Mode" checkbox is not checked,
SLABScape attempts to connect to the specified SLAB Server. SLABScape usesthe
dabserv.ini filein SLAB's bin directory to initialize the droplist.

« Output Settings - for an explanation of the DirectSound Settings see the SRAPI
Reference Manual. If the "Output to memory and write to file" checkbox is checked,
SL ABScape routes sound output to the specified file. In this mode, no sound is heard
through the sound peripheral. Since rendering does not occur in real-time, the
SLABScape user interface is not synchronized to sound output. For simple scenes,
SLAB will render faster than real-time; for complex scenes, SLAB will render slower
than real-time. This option is primarily for debugging, but can be used with the
SLABScript Editor to render a"canned”" dynamic scene. Output is stopped when the
SLAB Renderer is stopped.

Caution: Sound file output is generated at 172 kb/s, so do not forget to stop the SLAB
Renderer!

Top

SLABScript Editor

The SLABScript Editor alows for the creation and auditioning of SLAB scripts.

Button definitions;

« Add Event - displays adialog for adding SLABScript commands. The default parameters
are all set to zero. Be sureto change this value for Source Index (valid values = 1-4).

« Open... - opens apreviously saved script.
o SaveAs... - saves the current script.
« PrepScape - prepares SL ABScape for script playback:
o enables script processing (enables checkbox: SLAB Settings | Script Settings |

file://IC|/SLAB/doc/user/chapters/slabscape.htm (7 of 8) [10/1/2003 11:36:28 AM]



SLABScape

Process script file while rendering)

o setsthe SLAB Settings script file to the last script loaded or saved (sets edit
control: SLAB Settings | Script Settings | File)

o enables SLAB auto monitoring (enables menu item: View | Monitor SLAB
Autos)

To audition a script, press the PrepScape button and then start the Spatial renderer (select Spatial
Render plug-in, press SLAB Render toolbar button).

Top

3D View

The 3D View displays a Direct3D view of the SLABScape environment. Right-clicking on the
3D View brings up a context-sensitive menu for adjusting various 3D View options. If your
graphics adapter or desktop display settings do not support Direct3D acceleration, this button
will be disabled.

Top

Status Bar

The two status indicator panes in the lower-right of the SL ABScape window show the following:

« Update Rate Indicator - the number without parentheses indicates the rate at which the
SLAB Renderer is updated; the number within parentheses indicates the update rate of
the visual display.

« Clip and Underflow Indicator - the "C=" field indicates the number of renderer mixer
clips (implementation renderer-dependent); the "U=" field indicates the number of
DirectSound underflows.

Top

SLAB User Manua

Last Updated: October 1, 2003

file://IC|/SLAB/doc/user/chapters/slabscape.htm (8 of 8) [10/1/2003 11:36:28 AM]



SLABServer

SLABServer

The SLABServer application allows a workstation to be dedicated as a stand-alone SLAB server.
In this configuration, the entire computational load is transferred to the server. This alows for
more robust rendering and frees user workstation resources. To communicate with the SLAB
server, allocate a CSLABCIient object using SLABAPIClient().

The SLABServer User Interface

o Server Log - displays SRAPI commands as they arrive. Since the following functions
can be received quite frequently, they are not logged: SrclLocate(), SrcLocatePolar(),
SrcGain(), and LstPosition().

« Monitor - monitors the following parameters at a 15Hz update rate:
o listener position (meters and degrees)
sound source location (meters)
listener-rel ative sound source azimuth and elevation (degrees)
sound source gain (linear gain scalar, not dB)
number of mixer clips
number of DirectSound underflows
number of packets received
o number of packets received per second (updated every second)
« Listen for Connection - beginslistening for a socket connection from a SLAB client.

« Test - spatially renders a noise sound source to the left and a sine sound source to the
right of the listener. Note: since the sounds are spatially rendered, each will be heard in
both output channels

o listener: (0.1m, 0.2m, 0.3m, 1.0deg, 2.0deg, 3.0deg )
o sound source 1: (0.1m, 1.2m, 0.3m), gain = -2.0dB
o sound source 2: (0.2m, -1.2m, -0.3m ), gain = -1.0dB
e Turn Monitor On - enables the Monitor.
o EXxit - closes SLABServer.

O
O
O
O
O
O

SLAB User Manud

Last Updated: December 19, 2002

file://IC|/SLAB/doc/user/chapters/slabserver.htm [10/1/2003 11:36:28 AM]



slabtools

slabtools

The slabtools are MATLAB utilities for visualizing and manipulating HRTF data and for
visualizing SLAB processing. To use the slabtools, the slabtool s directory should be added to
your MATLAB path. General slabtools help can be obtained by typing "help slabtools' at the
MATLAB command prompt. Individual tool help is available by typing "help <toolname>".

Definition of the variables map, hrir, and itd

These variables are similar to the Snapshot variables of the same name. Snapshot isan HRTF
measurement system developed by Crystal River Engineering.

« hrir contains HRIR taps stored in rows. All left ear HRIRs are followed by al right ear
HRIRs (e.g. theright ear responsehrir (:, i +si ze( map, 2) ) correspondsto the left
ear responsehrir(:,i)).

« itd containsthe interaural time delay (in samples).

« map maps azimuth and elevation database locations to hrir and itd indices (see hindex).
Each azimuth and elevation pair isatwo-element columnvector[ el ; az ].

The number of columnsin map, hrir, and itd is HRTF database-dependent. Since hrir contains
the left and right ear responses, it will have twice the number of colums as map and itd.

The use of map, hrir, and itd isidentical to Snapshot with the following exception:

o SLAB'smap variableisgrouped by azimuth (eg.[ [ 90; 180], [72; 180] ]);
Snapshot's, by elevation (e.g.[ [ 90; 180], [90; 150] ])

sarc

sarc isthe SLAB HRTF archive format. The goal of the sarc format is to provide aflexible
MATLAB HRTF data structure and storage format for HRTF manipulation, visualization, and
analysis. To learn more about sarc, type "help sarc" at the MATLAB command prompt.

« sarcispresently in development! We are currently upgrading our HRTF measurement
system to the AuSIM HeadZap system. Thus, the sarc format will change to
accommodate the data generated by HeadZap. | would like to support HRTF datafrom
other formats as well (e.g., CIPIC). Any suggestions regarding the sarc format or similar
efforts welcome! Please send suggestionsto Joel D. Miller at
jdmiller@mail.arc.nasa.gov.

Examples

SLAB\HRTF\jdm ie.sdh was created as follows:
>> mtd( 'jdmslh', "jdmie.slh', 0, 0);

SLAB\HRTR\jdm_he.slh was created as follows:
>> rmhrirg "Jdmslh', "jdmhe.slh", 0, 0)

map2map()

map2map() isthe intellectual property of Jonathan Abel and is covered under the same usage

file://IC|/SLAB/doc/user/chapters/slabtools.htm (1 of 2) [10/1/2003 11:36:28 AM]


mailto:jdmiller@mail.arc.nasa.gov

slabtools

restrictions outlined in the SLAB Software Usage Agreement. Many thanks to Jonathan Abel for
allowing map2map() to be released with the SLAB User Release!

SLAB User Manual

Last Updated: December 19, 2002

file://IC|/SLAB/doc/user/chapters/slabtools.htm (2 of 2) [10/1/2003 11:36:28 AM]



Appendix

Appendix

o Glossary

o Known Issues

Glossary

Client/Server Mode

Diotic

DioticV

DSP Function

Host Mode

HRTF Database

HRTF Map
LeftMonotic

MSVC++
RightMonotic

Render plug-in

SLAB

SLAB Client

SLAB Client Library

Client/Server Mode refers to running SLAB remotely on a separate
workstation.

Diotic isaRender plug-in that supports diotic auditory display.

DioticV isaRender plug-in that supports diotic, left-monoatic, and
right-monotic auditory display.

A DSP Function isa C++ classwhich is "plugged-into" SLAB's
signal flow architecture. Thisoccursin SLAB's SLABWire layer and
is hidden from the SLAB Render APl user.

Host Mode refers to running SLAB locally on the same workstation
as the user's application.

Set of HRIRs and I TDs measured about a sphere specified by
azimuth and elevation.

See HRTF Database.

LeftMonotic is a Render plug-in that supports left-monotic auditory
display.

Microsoft Visual C++. The SLAB development environment.

RightMonotic is a Render plug-in that supports right-monotic
auditory display.

Render plug-ins are DLLsthat can be loaded and inserted in the
SLAB rendering architecture. The SLAB Render API supportsfive
Render plug-ins: Spatial, DioticV, Diotic, LeftMonotic, and
RightMonotic. A Render plug-inisinserted into SLABWireasa
"DSP Function."

SLAB isshort for Sound Lab. What "SLAB" referstois
context-dependent. Generally speaking, SLAB refersto the entire
collection of SLAB-related material, applications, libraries,
documentation, etc. Frequently, however, "SLAB" will refer to one
of the constituent parts (e.g. the SLAB Spatial Renderer, the SLAB
Server, the SLABAPI Libraries, etc.).

A user application that uses the SLAB Client API to communicate
with the SLAB Server.

The SLAB Client Library contains the SLAB Render Client API.

file://IC|/SLAB/doc/user/chapters/appendix.htm (1 of 3) [10/1/2003 11:36:28 AM]



Appendix

SLAB Host Library
SLAB Libraries
SLABWire Library

SLAB Render API

SLAB Render API
Libraries

SLABWire Layer

SLAB Server

SLAB Server Library
SLAB Workstation
SLABScape
Application

SLABServer
Application

Spatial
SRAPI

VAE

Top

The SLAB Host Library contains the SLAB Render Host API.
There arefour SLAB libraries: Wire, Host, Client, and Server.

The SLABWire Library containsthe SLABWire layer, a"digital
wire" or, more specifically, a sample stream input to DSP to sample
stream output chain.

The SLAB Render API (application programming interface) (SRAPI)
isthe interface through which the user interacts with a SLAB Render
plug-in. This API isused to specify scene parameters and to control
rendering. There aretwo SLAB Render APIs of interest to the SLAB
user: the Host API (Host Mode) and the Client API (Client/Server
Mode). A third APl exists for writing server applications, the Server
API.

A subset of the SLAB Libraries referring to the Host, Client, and
Server libraries.

Thislayer is contained in the SLABWire Library and is hidden from
the SLAB Render API user. The SLAB Render AP is built on top of
thislayer.

A SLAB Workstation configured to run in Client/Server Mode. The
SLABServer application runs on this workstation.

The SLAB Server Library contains the SLAB Render Server API.

The SLAB Workstation is the workstation on which the SLAB
renderer is running.

An application that demonstrates many of the features of SLAB.

The application that runs on the SLAB Server to provide SLAB
rendering servicesto a SLAB Client.

Spatial is a Render plug-in for rendering HRTF-based virtual acoustic
environments.

SLAB Render API.

Virtual Acoustic Environment.

Known |ssues

« SLAB does not detect all occurrences of DirectSound buffer underflow. Usualy,
underflow resultsin an underflow counter increment. But, sometimes, stuttering is heard
without an underflow increment. Thisis most likely to occur when the CPU is at

file://IC|/SLAB/doc/user/chapters/appendix.htm (2 of 3) [10/1/2003 11:36:28 AM]



Appendix

Top

maximum usage or a CPU usage spike occurs (e.g. reading afile). A missed underflow
can be caused by alate Windows timer update, allowing the DirectSound pointers to
wrap around the buffer to avalid location.

SLAB's client/server implementation is not robust. The following behavior has been
noticed when running SLABScape in client/server mode with SLABServer. If asourceis
moving in atrajectory, the client packet receive function will most likely time-out at
some point. The packets are probably overwhelming the sockets interface. Also,
renderer enumeration can fail with SLABScape receiving an incomplete enumeration info
packet. The source of this behavior is not known.

The SLABScape "hand" isin development and not documented.

slabref.pdf Acrobat Issues: (1) light blue background of SRAPI function name not in pdf,
(2) class hierarchy diagrams not in pdf (Acrobat doesn't support PNG), (3) sectionsin
strange order (order automatically generated by Acrobat).

ScriptRead() and ScriptWrite() are currently limited to 32 sourcesin client/server mode.

Under Windows98, there appears to be a somewhat severe memory leak when
performing several (100s) of RenderStart()/RenderStop()'s. Unfortunately, it is not
reproducible, and, thus, very hard to track down. Under Windows2000, the leak is less
severe (or possibly non-existent (v5.1.0 test)). This bug isthought to be due to thread
behavior.

Under Windows98, a case has been noticed where the left and right channels swap when
performing severa (100s) of RenderStart()/RenderStop()'s. This bug is thought to be
related to the bug above. This behavior has not been noticed under Windows2000.

SLAB User Manua

Last Updated: June 27, 2003

file://IC|/SLAB/doc/user/chapters/appendix.htm (3 of 3) [10/1/2003 11:36:28 AM]



	Local Disk
	SLAB User Manual
	Introduction
	Overviews
	SLAB Render Plug-Ins
	Source Code
	Example Application
	Applications and Utilities
	SLABScape
	SLABServer
	slabtools
	Appendix


